Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tomonori Hoki, Takatoshi Senju

 and Jin Mizuguchi*Department of Applied Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan

Correspondence e-mail: mizu-j@ynu.ac.jp

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.044$
$w R$ factor $=0.137$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The monoclinic form of 2,9-dichloro-5,12-dihydro-quino[2,3-b]acridine-7,14-dithione dimethylacetamide disolvate

The title compound, $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$, is a dimethylacetamide (DMA) disolvate of DTQ-Cl, which is a thionated derivative of a 2,9-dichloroquinacridone pigment. The compound shows polymorphism and this paper reports the monoclinic form (space group $P 2_{1} / c, Z=4$). Two DMA molecules are hydrogen bonded via their O atoms to the NH group of DTQ-Cl. The molecular planes of the two DMA molecules are asymmetrically twisted with respect to the DTQ-Cl skeleton by 11.65 (8) and 31.58 (9) .

Comment

The title compound (DTQ-Cl-2DMA), (I), is a dimethylacetamide (DMA) disolvate of DTQ-Cl, which is a thionated derivative of 2,9-dichloroquinacridone known as an industrially important red pigment (Herbst \& Hunger, 1997). The background of the present study has been set out in our earlier paper (Senju et al., 2005a). We obtained three kinds of solvated crystals of DTQ-Cl. One was isolated from a dimethylformamide solution (Senju et al., 2005a), and the other two polymorphic crystals were obtained from one single solution in DMA. The present report describes the structure of the monoclinic form, ($\mathrm{I} a$), while that of the triclinic form, (Ib), will be presented in the following paper (Senju et al., 2005b).

Fig. 1 shows an ORTEPIII (Burnett \& Johnson, 1996) plot of ($\mathrm{I} a$) which includes two solvent molecules. The DTQ-Cl molecule is noncentrosymmetric and planar, as characterized by the mean standard deviation of $0.038 \AA$ from the leastsquares plane ($\mathrm{C} 1-\mathrm{C} 20 / \mathrm{N} 1 / \mathrm{N} 2$). The molecular planes of the two DMA molecules are asymmetrically twisted with respect to the skeleton of DTQ-Cl by 11.65 (8) and 31.58 (9) .

Received 9 May 2005 Accepted 24 May 2005 Online 31 May 2005

Figure 1
A view of the molecular structure of (Ia), showing 50\% probability displacement ellipsoids.

There are $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds (Table 2) between the NH group of DTQ-Cl and the O atom of DMA. The geometrical features of the two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are slightly different, as also inferred by the asymmetric torsion angles between DMA and the DTQ-Cl skeleton. DTQ-Cl molecules are stacked along the b axis in such a way that the molecules of one column cross the others in the neighbouring column in a 'hunter's fence' fashion when viewed from the side (Fig. 2). DMA molecules also form their own columns and these are sandwiched by two columns of DTQ-Cl.

Experimental

DTQ-Cl was synthesized by thionation of commercially available 2,9dichloroquinacridone, using Lawesson's reagent (Rochat et al., 1988). Crystals of (I) were grown by gradual cooling from a dimethylacetamide solution prepared at about 420 K . Single crystals of both monoclinic and triclinic forms [(I $a)$ and ($\mathrm{I} b$), respectively] were obtained at the same time from one single solution. Both crystal forms appeared dark green. However, the crystal shapes were different, being needle for ($\mathrm{I} a$) and platelet for ($\mathrm{I} b$).

Crystal data

```
\(\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}\)
\(M_{r}=587.58\)
Monoclinic, \(P 2_{1} / c\)
\(a=14.0463\) (12) \(\AA\)
\(b=7.7507\) (7) \(\AA\)
\(c=25.092\) (2) \(\AA\)
\(\beta=90.446(6)^{\circ}\)
\(V=2731.7\) (4) \(\AA^{3}\)
\(Z=4\)
```

$D_{x}=1.429 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 19515
\quad reflections
$\theta=3.1-68.3^{\circ}$
$\mu=3.85 \mathrm{~mm}^{-1}$
$T=93.1 \mathrm{~K}$
Needle, dark green
$0.50 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID-F imagingplate diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.321, T_{\text {max }}=0.681$
23140 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.137$
$S=1.09$
4612 reflections
350 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 2$	1.748 (3)	C6-C18	1.425 (3)
$\mathrm{C} 2-\mathrm{C} 12$	1.744 (3)	C7-C8	1.391 (3)
S1-C19	1.674 (3)	C8-C16	1.423 (3)
S2-C9	1.666 (2)	C8-C9	1.463 (3)
N1-C5	1.354 (3)	C9-C10	1.461 (3)
N1-C6	1.371 (3)	C10-C15	1.409 (3)
N2-C15	1.353 (3)	C10-C11	1.413 (4)
N2-C16	1.371 (3)	C11-C12	1.366 (3)
C1-C2	1.365 (4)	C12-C13	1.407 (4)
C1-C20	1.418 (4)	C13-C14	1.360 (4)
C2-C3	1.403 (4)	C14-C15	1.415 (3)
C3-C4	1.363 (4)	C16-C17	1.390 (4)
C4-C5	1.416 (4)	C17-C18	1.392 (3)
C5-C20	1.412 (3)	C18-C19	1.455 (3)
C6-C7	1.394 (3)	C19-C20	1.452 (3)
C5-N1-C6	122.5 (2)	C11-C10-C9	121.5 (2)
C15-N2-C16	122.7 (2)	C12-C11-C10	120.2 (2)
C2-C1-C20	120.3 (2)	C11-C12-C13	121.3 (2)
C1-C2-C3	121.4 (2)	C11-C12-Cl2	120.3 (2)
C1-C2-Cl1	119.6 (2)	C13-C12-Cl2	118.47 (19)
C3-C2-C11	118.96 (19)	C14-C13-C12	119.8 (2)
C4-C3-C2	119.8 (2)	C13-C14-C15	120.2 (2)
C3-C4-C5	120.2 (2)	N2-C15-C10	121.2 (2)
N1-C5-C20	120.8 (2)	N2-C15-C14	118.7 (2)
N1-C5-C4	119.0 (2)	C10-C15-C14	120.1 (2)
C20-C5-C4	120.2 (2)	N2-C16-C17	119.3 (2)
N1-C6-C7	119.4 (2)	N2-C16-C8	119.6 (2)
N1-C6-C18	119.7 (2)	C17-C16-C8	121.1 (2)
C7-C6-C18	120.8 (2)	C16-C17-C18	121.2 (2)
C8-C7-C6	121.2 (2)	C17-C18-C6	117.8 (2)
C7-C8-C16	117.8 (2)	C17-C18-C19	121.7 (2)
C7-C8-C9	121.7 (2)	C6-C18-C19	120.4 (2)
C16-C8-C9	120.5 (2)	C20-C19-C18	116.0 (2)
C10-C9-C8	115.9 (2)	C20-C19-S1	122.18 (19)
C10-C9-S2	122.15 (19)	C18-C19-S1	121.83 (19)
C8-C9-S2	121.94 (18)	C5-C20-C1	118.1 (2)
C15-C10-C11	118.4 (2)	C5-C20-C19	120.5 (2)
C15-C10-C9	120.1 (2)	C1-C20-C19	121.3 (2)

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N $\cdots \mathrm{O} 1$	0.88	1.89	$2.747(3)$	164
N2-H2N $\cdots \mathrm{O} 2$	0.88	1.89	$2.772(3)$	176

A projection down the c axis, showing the stacking of the DTQ-Cl molecules in (I a). The solvent DMA molecules have been omitted for clarity.

Methyl H atoms were constrained to an ideal geometry, with C $\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in
geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{N}-\mathrm{H}=0.88 \AA$ and $\mathrm{C}-\mathrm{H}=0.95 \AA$, and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: CrystalStructure.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Herbst, W. \& Hunger, K. (1997). Industrial Organic Pigments, 2nd ed. pp. 454474. Weinheim: VCH.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2005). CrystalStructure. Version 3.7.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rochat, A. C., Jaffe, E. E. \& Mizuguchi, J. (1988). US Patent No. 4760004.
Senju, T., Hoki, T. \& Mizuguchi, J. (2005a). Acta Cryst. E61, o1617-o1619.
Senju, T., Hoki, T. \& Mizuguchi, J. (2005b). Acta Cryst. E61, o1930-o1932.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

